METROLOGY for HYDROGEN VEHICLES

Design of gravimetric primary standards for field testing of hydrogen refuelling stations

Marc de Huu, Martin Tschannen, Hugo Bissig (METAS) on behalf on the MetroHyVe project partners

FLOMEKO 2019, Lisbon 26-28 June 2019

This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

EMPIR Metrology for Hydrogen Vehicles

WP1: Flow metering

WP2: Quality assurance

WP3: Quality control

WP4: Sampling

WP5: Creating impact

WP6: Management

Other talks from MetroHyVe

Who	When	Where	Title
Oliver Büker	Wed 11:30 to 13:00	Session S2.9, room 5	Pressure dependence of Coriolis mass flow meters used at hydrogen refuelling stations
Rémy Maury	Thu 11:30 to 13:00	Session S10.5, room 2	Hydrogen refuelling station calibration with a traceable gravimetric standard
Marc MacDonald	Fri 11:30 to 13:10	Session S19.9, room 2	Air and Nitrogen testing of Coriolis flow meters designed for hydrogen refuelling stations

Introduction

Aim of this project:

• Development of a metrological infrastructure for hydrogen vehicles because hydrogen fueling is critical to the success of a hydrogen economy

time (s)

Introduction

OIML R139-1

International Recommendation Compressed gaseous fuel measuring systems for vehicles Part 1: Metrological and technical requirements

Т	able 1	- MPE values		
Accuracy class		MPE for the meter [in % of the measured quantity value]	MPE for the complete measuring system [in %_of the measured quantity value]	
			at type evaluation, initial or subsequent verification	in-service inspection under rated operating conditions
For general application	1.5	1	1.5	2
Fas hades and a ha	2	1.5	2	3
For hydrogen only	4	2	4	5

Develop mobile gravimetric standard for field testing with 1/5 of MPE (0.3%)

METAS Hydrogen Field Test Standard (HFTS)

ESD plastic frame to protect the scale from the environment, acts like a greenhouse Environment with explosive atmosphere \rightarrow certification

Federal Institute of Metrology METAS

Ex II 3G Ex h IIC T4 Gc SEV 18 ATEX 0110

drogen Field Test Standard (HFTS) 4008831, Version 1.0 METROLOGY for HYDROGEN VEHICLES

> ESD Plastic frame can be moved for better air circulation

Measurement method

Laboratory tests with N₂ @ -40°C

- Reproduce field tests as closely as possible and elaborate a testing procedure
- 5.5 MPa N₂ source, cooled down to -40°C to reproduce temperature conditions of hydrogen delivered by a HRS

Laboratory tests with N₂ @ -40°C

- Temperature increase in tank due to compression heating
- Tubing temperature below freezing point of water during fill
- Temperature around scale is constant

- Temperature profile around scale after fill with a closed housing
- Heat transfer from tank to air

Laboratory tests with N₂ @ -40°C

- Cold gas freezes humidity on pipes
- Ice is not part of mass of dispensed gas
- Scale reading profile after fill shows melting and evaporation of ice
- Better air circulation accelerates loss of mass

METROLOGY for HYDROGEN VEHICLES

Uncertainty budget

Uncertainty	Nominal	$u(x_i)$	Contribution
component	value	%	%
Initial mass	150.0000 kg	$4.7 \cdot 10^{-4}$	40.5
Final mass	151.0000 kg	$4.7 \cdot 10^{-4}$	40.5
Tank volume	0.120 m ³	4.17	0.16
Frame	0.070 m^3	7.14	< 0.1
volume			
Initial air	1.1500 kg/m ³	0.15	8.9
density			
Final air	1.1500 kg/m ³	0.15	9.0
density			
Initial tank	0.10 MPa	20	< 0.1
pressure			
Final tank	35.00 MPa	0.057	< 0.1
pressure			· · · · · · · · · · · · · · · · · · ·
Pressure	$2.2 \cdot 10^{-10}$	10	0.93
coefficient	Pa ⁻¹		

- Expanded uncertainty for the gravimetric method: 0.22 %
- Contribution from icing and condensation can be minimised if we wait long enough: 1 g spread (k=1)
- Expanded uncertainty for measurements in the field: 2.5 g for 1 kg (0.25%)
- Required uncertainty of 0.30% is achieved
- Measurements in the field under real conditions to validate some assumptions

Summary

- Presented design of METAS HFTS
- Presented experimental results with HFTS under laboratory conditions with N₂ gas at -40° C to mimic real fill conditions
- Varying temperature and scale reading profiles
- Condensation on pipes leads to change of mass over time → not negligible
- Presented uncertainty budget: U = 0.25%
- Guide for future designs of similar field testing instruments based on gravimetric principel

THANK YOU

Marc de Huu

marc.dehuu@metas.ch

